JPL Small-Body Database Browser
The orbit condition code is U=1
The inclination is 166 degrees, retrograde orbit
(2020 OR5) |
Classification: Centaur SPK-ID: 54049832 |
Orbital Elements at Epoch 2459000.5 (2020-May-31.0) TDB Reference: JPL 4 (heliocentric ecliptic J2000)
| Orbit Determination Parameters
Additional Information
|
Clones generation
I generated 100 clones trying to achieve the same nominal orbital parameters and uncertainty as shown by JPL:
Clones | Target | ||||
---|---|---|---|---|---|
mean | sd | mean | sd | ||
q | 3.88927291677 | 3.11616e-06 | 3.88927306489 | 3.1967e-06 | |
e | 0.37597036055 | 5.1608e-07 | 0.37597031575 | 5.2059e-07 | |
i | 166.56601061164 | 1.70801e-05 | 166.56601302486 | 1.6785e-05 | |
peri | 18.76671785638 | 0.00015793153 | 18.76671106595 | 0.00015733 | |
node | 329.73107930577 | 3.599887e-05 | 329.73107906158 | 3.6225e-05 | |
tp | 2459256.12624748 | 0.00084814629 | 2459256.12621527 | 0.00084017 |
Backward simulation
I used Mercury Integrator Package Version 6 by J.E. Chambers.
I simulated the 100 clones in the past 10^8 days running the Bulirsch-Stoer algorithm.
Initialization parameters:
)O+_06 Integration parameters (WARNING: Do not delete this line!!)
) Lines beginning with `)' are ignored.
)---------------------------------------------------------------------
) Important integration parameters:
)---------------------------------------------------------------------
algorithm (MVS, BS, BS2, RADAU, HYBRID etc) = BS
start time (days)= 2459167.50000
stop time (days) = -1d8
output interval (days) = 100
timestep (days) = 0.05
accuracy parameter=1.d-12
ejection distance (AU)= 100
Simulation results
11 clones ( (abbreviated OR_<xx>) entered the solar system from a distance grater that 100 AU, so they can be considered to have a cometary origin.
Time when they entered the solar system:
Clone Year
1 OR_79 -94821
2 OR_38 -105224
3 OR_39 -147499
4 OR_51 -163252
5 OR_97 -175502
6 OR_75 -217757
7 OR_18 -222400
8 OR_5 -231305
9 OR_55 -256597
10 OR_54 -259051
11 OR_98 -260336
6 of these 11 clones (abbreviated OR_<xx>) entered the solar system on a hyperbolic trajectory with the following V-infinity:
Clone V-Inf (Km/s)
1: OR_18.aei 16.04
2: OR_55.aei 14.09
3: OR_54.aei 10.27
4: OR_51.aei 9.90
5: OR_97.aei 6.82
6: OR_38.aei 4.72
Not clear to me:
- is the hyperbolic trajectory just a "simulation artifact" or is it a real possibility (...also considering the retrograde motion) ?
More details abut hyperbolic clone OR_18
Looking at the simulator output:
At JD -79500232.50000 the object was travelling on a hyperbolic trajectory:
a=-3.43644 AU
e=1.416468
i=70.6839 deg
Arg of perihelium:76.6540 deg
Ascending Node:143.8652 deg
Galactic long: 220.5192 deg
At JD -79500132.50000 (i.e. 100 days later - following a close encouter with Jupyter), the object was captured in this orbit:
a=5.92628 AU
e=0.128047
i= 166.8601 deg
Arg of perihelium: 228.0687 deg
Ascending Node: 148.3240 deg
Galactic Long 16.3927 deg
Overall Clone Behaviour
The simulation period has been divided into time slots.
In every time slot and for every clone, we look at the minimum perihelium distance, then we look at the resulting distribution calculating the mean plus 25 and 75 percentile.
(similar approach for the other parameters)
Kind Regards,
Alessandro Odasso
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.