Blog Archive

Showing posts with label 2017 BR93. Show all posts
Showing posts with label 2017 BR93. Show all posts

Monday, December 4, 2017

Amor (Neo) 2017 BR93

This NEO is listed in the page of Asteroids with Comet-Like Orbits maintained by Y. Fernandez.

I simulated 100 clones of this asteroid in the past 10^8 days trying to confirm its possible cometary origin: the goal is to determine whether some clones might have arrived from the outskirt of the solar system - arbitrary threshold: 100 AU.

The first step was to generate clones having orbital parameters distributed around the nominal ones with 1-sigma uncertainty as follows:

 
(2017 BR93)

Classification: Amor [NEO]          SPK-ID: 3767926
Ephemeris | Orbit Diagram | Orbital Elements | Physical Parameters | Close-Approach Data ]

[ show orbit diagram ]

Orbital Elements at Epoch 2458000.5 (2017-Sep-04.0) TDB
Reference: JPL 5 (heliocentric ecliptic J2000)
 Element Value Uncertainty (1-sigma)   Units 
e .7217412317070279 0.0001002
a 4.142675777273991 0.0015088 au
q 1.152735859221392 3.3533e-05 au
i 15.35366999553024 0.001219 deg
node 97.57957971696266 0.0028893 deg
peri 318.8120872155768 0.0036121 deg
M 38.89039107061564 0.021706 deg
tp 2457667.794750083124
(2016-Oct-06.29475008)
0.0066681 JED
period 3079.781063466159
8.43
1.6825
0.004606
d
yr
n .1168914259102677 6.3858e-05 deg/d
Q 7.13261569532659 0.0025977 au
Orbit Determination Parameters
   # obs. used (total)      34  
   data-arc span      75 days  
   first obs. used      2016-11-23  
   last obs. used      2017-02-06  
   planetary ephem.      DE431  
   SB-pert. ephem.      SB431-N16  
   condition code      6  
   fit RMS      .44498  
   data source      ORB  
   producer      Otto Matic  
   solution date      2017-Nov-30 06:50:30  

Additional Information
 Earth MOID = .222957 au 
 Jupiter MOID = .227161 au 
 T_jup = 2.447 

The orbit condition code is 6 so there is still a lot of uncertainty.

Simulation approach


reference:
J.E.Chambers (1999) 
A Hybrid Symplectic Integrator that Permits Close Encounters between Massive Bodies''. Monthly Notices of the Royal Astronomical Society, vol 304, pp793-799.

           Integration parameters
           ----------------------

   Algorithm: Bulirsch-Stoer (conservative systems)

   Integration start epoch:         2458000.5000000 days
   Integration stop  epoch:      -100000000.0000000
   Output interval:                     100.000
   Output precision:                 medium

   Initial timestep:                0.050 days
   Accuracy parameter:              1.0000E-12
   Central mass:                    1.0000E+00 solar masses
   J_2:                              0.0000E+00
   J_4:                              0.0000E+00
   J_6:                              0.0000E+00
   Ejection distance:               1.0000E+02 AU
   Radius of central body:          5.0000E-03 AU



Simulation Results
  • 75 out of 100 clones have a cometary like orbit.
    • of which: 16 came on a hyperbolic orbit. The one that had the highest speed had a Vinfinity about 15.2 km/s (Vinfinity = 42.1219*sqrt(-0.5/a) --> the semi-major axis being about -3.82 AU

The time (Year) when they entered the solar system was distributed as follows:

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
-276249 -148774  -75459  -98680  -33904    -709


In a graphical form:

A look at the nominal asteroid
The nominal asteroid itself does not have a cometary origin in the last 10^8 days. It appears to be nevertheless on a unstable orbit, there was a time in the past when its aphelion was at about 70 AU.

In the following plots (made with R package ggplot2), the vertical dashed lines show a close encounter with Jupiter.


A look at the clones - "footprint" diagrams
At any given time in the past, a clone had a certain perihelium q and a certain aphelium Q (I disregard the clones when on an hyperbolic trajectory because Q would be infinite).
Let's imagine that we plot all possible q-Q points in a diagram: the highest density area is the one where the clones happened to be for most of the time.

This is shown here ( I have used the R function stat_density2d):

In the diagram above, we can also see the current q-Q of the asteroid together with that of Jupiter and Saturn.
In a similar way, these are the footprints for w-om and e-i:
 


Analysis of close approaches
These plots show the distribution of close appproaches (number and Dmin distance) between the clones and the major planets.


Kind Regards,
Alessandro Odasso