Thanks to Sam Deen that has recovered other observations and kindly shared them with me, the orbit condition code has improved and I repeated the simulation (see previous post).
K17FG1O C2015 03 29.02563110 54 49.70 +04 40 35.8 W84
K17FG1O C2016 01 16.33138910 59 03.26 +04 31 59.3 W84
K17FG1O C2016 01 16.33228610 59 03.25 +04 31 59.1 W84
K17FG1O C2016 02 28.23331010 57 26.75 +04 43 59.5 W84
K17FG1O C2017 01 10.23785311 00 35.66 +04 43 37.7 W84
K17FG1O C2017 03 29.11459510 57 36.07 +05 06 24.5 W84
K17FG1O C2017 03 30.10004610 57 33.77 +05 06 43.1 W84
K17FG1O C2018 03 19.16210110 59 25.35 +05 16 04.6 24.1 V W84
K17FG1O C2018 03 19.16325210 59 25.35 +05 16 04.5 23.4 V W84
K17FG1O*.C2017 03 23.13730 10 57 50.425+05 04 32.22 24.1 rc~2b81807
K17FG1O !C2017 03 23.13730 10 57 50.39 +05 04 32.1 23.3 V ~2y3AW84
K17FG1O .C2017 03 23.19683 10 57 50.260+05 04 33.54 c~2b81807
K17FG1O !C2017 03 23.19683 10 57 50.24 +05 04 33.2 ~2y3AW84
K17FG1O .C2017 03 24.14054 10 57 47.960+05 04 51.33 c~2b81807
K17FG1O !C2017 03 24.14054 10 57 47.94 +05 04 51.2 ~2y3AW84
K17FG1O C2017 05 20.17658 10 56 17.838+05 18 18.36 c~2b81G37
K17FG1O C2017 05 20.19927 10 56 17.811+05 18 18.56 c~2b81G37
K17FG1O C2017 05 20.24493 10 56 17.795+05 18 19.03 c~2b81G37
K17FG1O C2017 05 20.27484 10 56 17.764+05 18 18.94 c~2b81G37
K17FG1O C2018 03 07.24780 10 59 56.061+05 12 09.72 c~2b81G37
K17FG1O C2018 03 07.30383 10 59 55.912+05 12 10.70 c~2b81G37
K17FG1O C2018 03 12.23446 10 59 43.088+05 13 49.05 24.0 rU~2b81304
K17FG1O C2018 03 12.29836 10 59 42.914+05 13 50.49 U~2b81304
Using Find_Orb by Bill Gray I get:
Find_Orb determines that the diameter is 433.9 km (assuming 10% albedo).
Simulation
I generated 100 clones trying to achieve the same mean and standard deviation calculated by Find_Orb.
This is the result:
Clones | Target | ||||
---|---|---|---|---|---|
mean | sd | mean | sd | ||
q | 34.40346635 | 0.05606912 | 34.4045995 | 0.0562 | |
e | 0.42549611 | 0.00229206 | 0.4251786 | 0.00228 | |
i | 54.10666505 | 0.00430385 | 54.10673 | 0.0043 | |
peri | 151.07997749 | 0.59806858 | 151.09399 | 0.6 | |
node | 164.98929741 | 0.00015952 | 164.98932 | 0.00016 | |
tp | 2515192.39923773 | 448.01832028 | 2515227.815598 | 446 |
Then, I used Mercury6 simulator (*) by J.E Chambers using an arbitray threshold of 100 AU as ejection distance from the solar system:
Ejection Distance (AU): 100
Simulation period (days): -1d8
Simulation steps (days) : 100
Integration Algorithm: Bulirsch-Stoer
(*)J.E.Chambers (1999) ``A Hybrid
Symplectic Integrator that Permits Close Encounters between
Massive Bodies''. Monthly Notices of the Royal Astronomical
Society, vol 304, pp793-799.
The simulation is backward so the ejection distance actually is the "entry distance" in the solar system.
In this case - contrary to the previous simulation - none of the clones ever reached a distance greater than 100 AU from the sun.
In the following plots, one can see that the behaviour of all clones taken together.
Let's take the example of the Q-aphelium plot (similar concept for other orbital parameters):
the time has been divided into 10 slots and in every slot and for every clone, I calculated the (max) Q distance. Taking into account all the clones, the resulting value distribution is plotted with a boxplot.Q plot
q plot
Period plot
Orbit Energy plot
e plot
i plot
w plot
om plot
all plots have been made using the R language - ggplot2 library (**)
(**)
R Core Team (2019). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
URL https://www.R-project.org/.
H. Wickham. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York, 2016.
Kind Regards,
Alessandro Odasso
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.