Blog Archive

Friday, May 17, 2019

2017 FO161 - update May 17 2019

Thanks to Sam Deen that has recovered other observations and kindly shared them with me, the orbit condition code has improved and I repeated the simulation (see previous post).

     K17FG1O  C2015 03 29.02563110 54 49.70 +04 40 35.8                      W84
     K17FG1O  C2016 01 16.33138910 59 03.26 +04 31 59.3                      W84
     K17FG1O  C2016 01 16.33228610 59 03.25 +04 31 59.1                      W84
     K17FG1O  C2016 02 28.23331010 57 26.75 +04 43 59.5                      W84
     K17FG1O  C2017 01 10.23785311 00 35.66 +04 43 37.7                      W84
     K17FG1O  C2017 03 29.11459510 57 36.07 +05 06 24.5                      W84
     K17FG1O  C2017 03 30.10004610 57 33.77 +05 06 43.1                      W84
     K17FG1O  C2018 03 19.16210110 59 25.35 +05 16 04.6          24.1 V      W84
     K17FG1O  C2018 03 19.16325210 59 25.35 +05 16 04.5          23.4 V      W84
     K17FG1O*.C2017 03 23.13730 10 57 50.425+05 04 32.22         24.1 rc~2b81807
     K17FG1O !C2017 03 23.13730 10 57 50.39 +05 04 32.1          23.3 V ~2y3AW84
     K17FG1O .C2017 03 23.19683 10 57 50.260+05 04 33.54               c~2b81807
     K17FG1O !C2017 03 23.19683 10 57 50.24 +05 04 33.2                 ~2y3AW84
     K17FG1O .C2017 03 24.14054 10 57 47.960+05 04 51.33               c~2b81807
     K17FG1O !C2017 03 24.14054 10 57 47.94 +05 04 51.2                 ~2y3AW84
     K17FG1O  C2017 05 20.17658 10 56 17.838+05 18 18.36               c~2b81G37
     K17FG1O  C2017 05 20.19927 10 56 17.811+05 18 18.56               c~2b81G37
     K17FG1O  C2017 05 20.24493 10 56 17.795+05 18 19.03               c~2b81G37
     K17FG1O  C2017 05 20.27484 10 56 17.764+05 18 18.94               c~2b81G37
     K17FG1O  C2018 03 07.24780 10 59 56.061+05 12 09.72               c~2b81G37
     K17FG1O  C2018 03 07.30383 10 59 55.912+05 12 10.70               c~2b81G37
     K17FG1O  C2018 03 12.23446 10 59 43.088+05 13 49.05         24.0 rU~2b81304
     K17FG1O  C2018 03 12.29836 10 59 42.914+05 13 50.49               U~2b81304

Using Find_Orb by Bill Gray I get:

Find_Orb determines that the diameter is 433.9 km (assuming 10% albedo).

Simulation
I generated 100 clones trying to achieve the same mean and standard deviation calculated by Find_Orb.
This is the result:

Clones Target
mean sd mean sd
q 34.40346635 0.05606912 34.4045995 0.0562
e 0.42549611 0.00229206 0.4251786 0.00228
i 54.10666505 0.00430385 54.10673 0.0043
peri 151.07997749 0.59806858 151.09399 0.6
node 164.98929741 0.00015952 164.98932 0.00016
tp 2515192.39923773 448.01832028 2515227.815598 446

Then, I used Mercury6 simulator (*) by J.E Chambers using an arbitray threshold of 100 AU as ejection distance from the solar system:

Ejection Distance (AU): 100
Simulation period (days): -1d8
Simulation steps (days) : 100
Integration Algorithm:  Bulirsch-Stoer

(*)J.E.Chambers (1999) ``A Hybrid
      Symplectic Integrator that Permits Close Encounters between
      Massive Bodies''. Monthly Notices of the Royal Astronomical
      Society, vol 304, pp793-799.


The simulation is backward so the ejection distance actually is the "entry distance" in the solar system.

In this case - contrary to the previous simulation -  none of the clones  ever reached a distance greater than 100 AU from the sun.

In the following plots, one can see that the behaviour of all clones taken together.

Let's take the example of the Q-aphelium plot (similar concept for other orbital parameters):
the time has been divided into 10 slots and in every slot and for every clone, I calculated the (max) Q distance. Taking into account all the clones, the resulting value distribution is plotted with a boxplot.

Q plot

q plot

Period plot

Orbit Energy plot

e plot

i plot

w plot

om plot

all plots have been made using the R language - ggplot2 library (**)

(**)
R Core Team (2019). R: A language and environment for statistical
  computing. R Foundation for Statistical Computing, Vienna, Austria.
  URL https://www.R-project.org/.

  H. Wickham. ggplot2: Elegant Graphics for Data Analysis.
  Springer-Verlag New York, 2016.

Kind Regards,
Alessandro Odasso




No comments:

Post a Comment

Note: Only a member of this blog may post a comment.