Blog Archive

Sunday, May 12, 2019

2017 FO161

I refer to this message from Sam Deen published on the MPML list.

For what's worth due to the extreme orbit uncertainty (condition code 9), I tried to make a simulation.

JPL Small-Body Database Browser
Ephemeris | Orbit Diagram | Orbital Elements | Physical Parameters ]

[ show orbit diagram ]

Orbital Elements at Epoch 2457968.5 (2017-Aug-03.0) TDB
Reference: JPL 2 (heliocentric ecliptic J2000)
 Element Value Uncertainty (1-sigma)   Units 
e .4495582354653219 0.16822
a 61.51516382073726 11.543 au
q 33.86051531912641 3.9954 au
i 54.05413287988313 0.053617 deg
node 164.9909556914857 0.0017229 deg
peri 145.4085682131792 32.795 deg
M 251.4476070979913 79.839 deg
tp 2511106.916053698100
(2163-Jan-28.41605370)
24126 TDB
period 176226.6981677686
482.48
49602
135.8
d
yr
n .002042823271064628 0.00057499 deg/d
Q 89.16981232234812 16.732 au

Orbit Determination Parameters
   # obs. used (total)      14  
   data-arc span      354 days  
   first obs. used      2017-03-23  
   last obs. used      2018-03-12  
   planetary ephem.      DE431  
   SB-pert. ephem.      SB431-N16  
   condition code      9  
   norm. resid. RMS      .23801  
   source      ORB  
   producer      Otto Matic  
   solution date      2019-Feb-11 05:48:07  

Additional Information
 Earth MOID = 32.9588 au 
 Jupiter MOID = 29.3689 au 
 T_jup = 3.690 
(2017 FO161)
Classification: TransNeptunian Object          SPK-ID: 3802117

Simulation
I generated 100 clones, trying to achieve the same distribution shown above.

Note: given the  uncertainty, the assumption of "normality" may not hold ...so this is another reason not to trust "blindly" the simulation results.


Clones
Target

mean sd
mean sd
q 33.3889976 3.99529506
33.86051532 3.9954
e 0.46907446 0.16820753
0.44955824 0.16822
i 54.04937496 0.05360707
54.05413288 0.053617
peri 141.63264456 32.79320364
145.40856821 32.795
node 164.99111511 0.00172288
164.99095569 0.0017229
tp 2508314.74330338 24125.06256158
2511106.9160537 24126


I configured the Mercury6 simulator (*) with an ejection distance equal to 100AU and integration algorithm Bulirsch-Stoer.

(*)
J.E.Chambers (1999) ``A Hybrid
      Symplectic Integrator that Permits Close Encounters between
      Massive Bodies''. Monthly Notices of the Royal Astronomical
      Society, vol 304, pp793-799.

Simulation Result




Do you think that a "still dormant" comet, constituted mainly by ice, can explain the fact that the object is brighter than expected?

Kind Regards,
Alessandro Odasso

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.